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ABSTRACT: We consider an elastic rod model for twisted DNA in the plectonemic regime. The molecule is
treated as an impenetrable tube with an effective, adjustable radius. The model is solved analytically, and we
derive formulas for the contact pressure, twisting moment, and geometrical parameters of the supercoiled region.
We apply our model to magnetic tweezer experiments of a DNA molecule subjected to a tensile force and a
torque and extract mechanical and geometrical quantities from the linear part of the experimental response curve.
These reconstructed values are derived in a self-contained manner and are found to be consistent with those
available in the literature.

1. Introduction

Mechanical properties of the DNA molecule play an important
role in the biological processes involved in the cell, yet we only
have an imprecise view of these properties. Advances in
nanotechnologies make it possible to exert forces onto isolated
DNA filaments: mechanical response of the molecule is now
widely studied. Single molecule experiments provide a powerful
way to investigate the behavior of DNA subjected to mechanical
stress. In such experiments, the molecule is held by optical or
magnetic tweezers and forces and torques are applied to it.8,28

The interaction between DNA and proteins is actively investi-
gated; for instance, the chemical and mechanical action of an
enzyme on a molecule can be inferred from the global
deformation of the molecule.24

In this paper we focus on a specific type of experiments: a
double-stranded DNA molecule is fixed by one end to a glass
surface while the other end is attached to a magnetic bead; using
a magnet, a pulling force and a torque are applied on the DNA
filament.30 Large ranges of pulling forces, from 1/10 to 100
pN, and the number of turns can be explored in the experiments,
and the molecule displays a variety of behaviors and conforma-
tions.1,7,27 We study the response of the molecule to moderate
forces, below 10 pN, and moderate to large number of turns,
equivalent to a positive supercoiling ratio of the order of 0.1.
In experiments, the pulling force is kept constant while the bead
is rotated gradually. The vertical extension of the molecule is
recorded and plotted as a function of the number of turns.
Experimental rotation-extension curves have a characteristic
shape and are called hat curVes.5,29 At zero number of turns
these curves exhibit a maximum, the value of which is explained
by the wormlike chain (WLC) model,18 and its variants. For a
small number of turns the vertical extension decreases and the
curve takes a rounded shape. Above a threshold value of the
number of turns, the extension of the molecule decreases
linearly. This linear part of the curve is obtained when the
molecule wraps around itself in a helical way, giving rise to a
structure comprising plectonemes. The plectonemic structure
is made of two interwound helical filaments whose geometry
is characterized by the so-called superhelical angle and radius;
note that each of these filaments is itself made of a double-
stranded DNA molecule. The superhelical angle and the twisting
moment in the filaments are key parameters that control the
action of topoisomerases,12 RNA polymerase,23 or other en-
zymes32 on DNA. The distance of the self-approach of DNA
in supercoiled regime has been the subject of a number of

studies.3,9,25,26 In previous analytical and numerical work, the
double-stranded DNA molecule has been modeled as a twist-
storing elastic filament. These approaches have been successful
at reproducing the response of DNA to moderate torque,4,19

given by the central region of the experimental curves. The
analysis of the linear regions of these curves, based on a detailed
model of plectonemes, was lacking until recently: in ref 17 a
composite model based on an empirical free energy of super-
coiled DNA is proposed.

Here we present an elastic rod model for helical supercoiling
of the DNA molecule, which is relevant to large number of
turns. Our model is self-contained and provides a mechanically
accurate description of elastic filaments in contact. The molecule
is divided in two domains: one where the configuration is a
wormlike chain, dominated by thermal fluctuations, and the other
one, a superhelical region dominated by elasticity, where the
molecule contacts itself. Several plectonemic regions may lie
at various places of the molecule, but as this does not change
the mechanical response of the system, we refer to these regions
as if they were in one piece. We deal with self-contact by
introducing an effective superhelical radius (distinct from the
crystallographic radius of 1 nm, from the size of the Manning
condensate and from the Debye length, although in the same
range of values), which varies with external loads and salinity
of the solution. The effective radius is defined as the radius of
a chargeless, impenetrable, and elastic tube having the same
mechanical response as the molecule. This radius is not given
as a parameter of the model and is extracted from experimental
data. Using an energy approach, we relate geometrical variables
(superhelical radius and angle) to applied force and torque. We
also characterize the response of the molecule in the plectonemic
regime, extend former numerical results,20 and show how
geometrical and mechanical parameters can be extracted from
experimental data.

2. Model

The present model investigates the equilibrium behavior of
an elastic rod with bending rigidity K0 (the bending persistence
length is A ) K0/(kT), where k is the Boltzmann constant and
T the absolute temperature) and twisting rigidity K3 under
traction and torsion, as shown in Figure 1. This is a coarse-
grained model for DNA where base-pair details are neglected.
For instance, the anisotropic flexibility of the molecule, origi-
nating from base pairing and major-minor groove geometry,
is smoothed out at a scale of several base pairs: a highly twisted
anisotropic rod can be replaced by an equivalent isotropic rod
with effective bending rigidity.11* To whom correspondence should be addressed.
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Geometry. We start with a geometric description of the rod
configurations relevant to the plectonemic regime. This defines
a reduced set of configurations (Ansatz), over which we shall
minimize the elastic strain energy associated with deformations.
The rod, of length l, is considered inextensible and has circular
cross section; let s denote the arc length along the rod. The
strain energy involves, at lowest order, the geometric curvature
κ(s) of the centerline of the rod as well as the twist τ(s). We
emphasize that the twist τ(s) is different from the geometrical
(Frénet-Serret) torsion of the centerline as it takes into account
the rotation of material cross sections around the centerline. It
allows one to distinguish between twisted and untwisted
configurations of the rod having the same centerline. The rod
centerline is parametrized by r(s), and its unit tangent t ≡ dr/
ds can be described with spherical angles, as shown in Figure
1: R(s) is the zenith angle, and ψ(s) the azimuth angle with
respect to the direction ex along the common axis of the two
superhelices in the plectonemic region.

We consider the following configurations, relevant to a large
applied number of turns, n. The tails are assumed to be straight
but twisted. (Thermal fluctuations will be accounted for by using
the rescaled tail length predicted by WLC theory.) The plec-
tonemes are described by two identical and uniform helices
where, again, each of these helices is itself a double-stranded
DNA molecule. Both the end loop of the plectonemes and the
matching region between the tails and the plectonemic part are
neglected. Consequently, the rod comprises two phases: one
made up of straight and twisted tails and the other one of
plectonemic structures. The plectonemic phase is not necessarily
made of a single component, but for the sake of simplicity, we
discuss the case of a single plectonemic structure (our results
are still valid if the plectonemes are split into several compo-
nents).

In the tails the rod is straight and aligned with the ez axis: t
) ez. The geometric curvature κ ≡ |dt/ds| is zero, κ(s) ) 0.

In each filament of the plectonemes, the position vector r(s)
and the tangent vector t(s) describe a superhelix of axis ex:

rx(s)) s cos R tx(s)) cos R
ry(s)) �R sin ψ(s) ty(s)) sin R cos ψ(s)

rz(s))-�R cos ψ(s) tz(s)) sin R sin ψ(s) (1)

The other filament of the plectonemes is obtained by a rotation
of 180° around the axis ex. Here � ) (1 stands for the chirality
of the two helices, and R and R denote the superhelical radius
and angle, respectively. In eq 1, the condition dr/ds ) t yields
dψ/ds ) � sin R/R. The curvature in the plectonemes is κ(s) ≡
|dt/ds| ) (sin2 R)/R.

Noting lp the contour length spent in the plectonemes, we
obtain the following expression for the integral of the squared
curvature over the whole length of the rod:

∫0

l
κ

2 ds) sin4 R
R2

lp (2)

The end torque twists the filament. For a rod with circular
cross section, the twist τ(s) at equilibrium is uniform,2 dτ/ds )
0 for all s. As a result, the equilibrium configuration of the rod
is fully specified by the centerline, through the variables R, R,
and lp, and an additional scalar τ describing twist.

The twist τ is geometrically related to the number of turns
imposed on the magnetic bead, n, which is equal to the link of
the DNA molecule, n ) Lk. In the present case the link reads20

Lk)Tw+Wr) 1
2π∫0

l
τ ds- � sin 2R

4πR
lp )

1
2π(τl- � sin 2R

2R
lp)
(3)

as we neglect the writhe of the tails.

Energy Formulation. Using the above notations, the rod is
described by four variables: R the superhelical angle, R the
superhelical radius, τ the twist, and lp the contour length spent
in the plectonemes. We proceed to derive the total energy of
the system as a function of these four variables. It is the sum of
three terms, V ) Vel + Vext + Vint, where the first term is the
strain elastic energy, the second is the potential energy associated
with the external loads Fext and Mext, and the third accounts for
interaction of the filaments in the plectonemes. The strain elastic
energy for the rod of total contour length l is

Vel )
K0

2 ∫0

l
κ

2 ds+
K3

2 ∫0

l
τ2 ds (4)

We do not take into account the reduction of the effective
torsional rigidity in the tails due to fluctuations.19 The potential
energy is given by

Vext )-Fext(z(l)- z(0))- 2πMextn (5)

where z(l) - z(0) ) l - lp for straight tails and n ) Lk.
If the DNA-DNA interaction was clearly established, we

would include the corresponding interaction energy Vint in the
total energy V.10 This is not the case, and we model the filaments
in electrostatic interaction as effective chargeless hard-core
tubes. The effective radius a of these tubes accounts for a variety
of physical mechanisms, including for example the presence of
counterions or thermal fluctuations in the plectonemes, which
we do not attempt to model. As in refs 25 and 33, we do not
try to predict the actual radius a but simply follow its variation
under changing experimental conditions (applied load, salinity,
etc.). Doing so, we replace the actual (unknown) interaction
potential Vint(R,R) by a hard-core interaction with adjustable
radius a and optimize a to best fit a given experiment. In section
3 we show how a can be extracted from experimental measure-
ments.

The parameter a must certainly be larger than the crystal-
lographic DNA radius 1 nm. It is different from the radius of
the Manning condensate14–16 since approximately a quarter of

Figure 1. Sketch of the magnetic tweezers experiment. A B-DNA
molecule of total contour length l is fixed in s ) 0 to a glass surface
while the other end in s ) l is attached to a magnetic bead. A pulling
force Fext and a torque Mext are applied at the upper end by using a
magnet. The superhelical angle and radius are denoted R and R,
respectively. The zenith angle R and the azimuth angle ψ of the tangent
vector with regard to the superhelical axis ex are also shown.
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the charge remains outside of the Manning condensate. The
equilibrium is the solution of a constrained minimization
problem for the elastic energy, subjected to the impenetrability
condition

Rg a (6)

We anticipate on the fact that there is contact, R ) a, for typical
experimental conditions. Consequently, we replace the actual
interaction energy with a constraint term:

Vint )-λ(R- a) (7)

where λ is a Lagrange multiplier. Note that this term is not a
regular energy but comes from the constraint: the multiplier λ
has to be set at the end of the procedure and chosen in such a
way that the constraint R ) a is satisfied.

Combining eqs 2–7, we write the total potential energy of
the system as

V(R, R, τ, lp))
K0

2
sin4 R

R2
lp +

K3

2
τ2l-Fext(l- lp)-

Mext(τl- �sin 2R
2R

lp)- λ(R- a) (8)

In ref 13 a similar energy function has been introduced, but the
rest of analysis differs from ours. Indeed, their approach focuses
on statistical mechanics, and the analysis of the state of lowest
energy is overlooked. Moreover, the parameter a is fixed a priori
to the crystallographic radius of DNA, a ) 1 nm, which is a
strong restriction and an underestimation of the actual distance
of self-approach of DNA in saline solution. In contrast, we
undertake a detailed analysis of the equilibrium solutions, with
thermal fluctuations considered in the tails; this allows us to
derive simple formulas for the force and the moment as a
function of the superhelical variables, applicable to magnetic
tweezers experiments.

3. Results

Mechanical equilibrium is given by the Euler-Lagrange
condition for the stationarity of the potential V(R,R,τ,lp) in eq
8 with respect to its variables

(∂V
∂τ

,
∂V
∂R

,
∂V
∂lp

,
∂V
∂R)) 0

The first condition ∂V/∂τ allows one to recover the constitutive
relation for twist deformations, Mext ) K3τ, given that the
twisting moment is uniform in the filament and equal to the
applied torque Mext.

Variation of the total energy with respect to R gives the
expression of the applied torque Mext in terms of the superhelical
variables R and R:

Mext )-
2�K0

R
cos R sin3 R

cos 2R
(9)

which is what was found for purely plectonemic solution (no
tails).31

The condition ∂V/∂lp ) 0, combined with eq 9, allows one
to relate the pulling force Fext to the superhelical geometry:

Fext )
K0

R2
sin4 R(1

2
+ 1

cos 2R) (10)

This formula justifies and extends the numerical fit Fext ∝ K0R4/
R2 found in ref 20 for small values of R.

The Euler-Lagrange condition with respect to R yields an
equation involving the Lagrange multiplier λ. The quantity λ/lp

can be interpreted as the contact force per unit length, p, of one
filament onto the other. Equations 8 and 9, together with the
condition ∂V/∂R ) 0, yields

p) λ
lp
)

K0

R3

sin4 R
cos 2R

(11)

Note that this pressure (more accurately, force per unit length)
is positive for R e π/4 ; if our assumption of contact R ) a
was incorrect, this would be indicated by a negative pressure
value here.

In magnetic tweezers experiments, the pulling force Fext is
imposed although the applied torque Mext is unknown. The two
unknowns R and R are then related by eq 10; in the next section,
a second equation relating those unknowns and the extension z
is given, which makes it possible to solve for R and R. The
twisting moment can then be found from eq 9.

Vertical Extension of the Filament. In magnetic tweezers
experiments, the measurable quantities are the vertical extension
z and the number of turns n imposed on the bead. Using eq 3
for n ) Lk, the equation z ) l - lp and the constitutive relation
τ ) Mext/K3 where Mext is found from eq 9, we obtain the vertical
extension of the filament as a linear function of the number of
turns n:

z) (1+
2K0

K3

sin2 R
cos 2R)l+ �n

4πR
sin 2R

(12)

Thermal fluctuations dominantly affect the tails and make the
end-to-end distance z of the molecule smaller than the contour
length l - lp of the tail parts, by a factor Fwlc ∈ [0, 1]: z )
Fwlc(l - lp). This factor depends on both the pulling force Fext

and the bending persistence length A ) K0/(kT) and can either
be read off an experimental hat curve from the value z(n ) 0)
) Fwlcl or computed from theoretical formulas.6,18 The depen-
dence of Fwlc on the pulling force makes the tails effectively
extensible (this is the classical entropic stiffness of a chain).
To account for these thermal effects, we replace eq 12 with

z)Fwlc(1+
2K0

K3

sin2 R
cos 2R)l+ �Fwlc

4πR
sin 2R

n (13)

One of the main features of the experimental hat curves is
the linear decrease of the vertical extension with the number of
turns. We define the slope q in the linear part of the hat curve
as

q ≡ |dz
dn| ) Fwlc

4πR
sin 2R

(14)

Given experimental values of Fext and q, eqs 10 and 14 can be
solved for R and R. Since q (and Fext) are constant along the
linear part of a hat curve, the values of R and R thus determined
will be constant as well. As a result, the twisting moment in
the molecule, given by eq 9, is constant, for a given experiment,
along the linear region of the hat curve, a property that has been
previously reported in the literature5,17 and which is a clear
outcome of the present model. An interpretation of the fact that
R and R are constant in the linear region of the hat curve is that
each additional turn of the bead is used to convert a small piece
of tail into plectonemes.

Twisting Moment. The twisting moment in the molecule,
which is uniform and equal to Mext at equilibrium, cannot be
measured in magnetic tweezers experiments. However, it has
been shown that enzyme activity such as RNA polymerase
depends on the value of the twisting moment in DNA.23 The
value of Mext can be determined from eq 9 once R and R are
known, as explained above. Here, we give a formula for Mext

directly as a function of the experimental slope q and the external
force Fext. Indeed, using eq 14 to eliminate R in eqs 9 and 10,
one obtains Mext(q,R) and Fext(q,R) as functions of q and R. It
is then possible to eliminate R, which yields
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Mext )m+ (m2 + 2K0Fext)
1⁄2, where m)

qFext

4πFwlc
-

3πFwlcK0

2q
(15)

In the limit of small R, one can expand the functions Mext(q, R)
and Fext(q, R) prior to elimination of R, and this leads to a
simplified formula:

Mext=
2q

3πFwlc
Fext (16)

where, as explained above, Fwlc ) z(n ) 0)/l. As shown in Figure
4, this approximation is accurate when used with typical
experimental values. Equation 16 provides a simple and direct
mean of evaluating the twisting moment in magnetic tweezers
experiments, based on the slope of the linear part of the hat
curve only. Note that it should not be inferred from eq 16 that
Mext depends linearly on Fext, as the slope q is itself a function
of Fext.

Superhelical Angle Limit. It is known that the topology of
contact between two impenetrable helical tubes winding along
a common axis changes when R becomes larger than π/4.21 The
possibility of such a change of topology is not considered in
our model (being specific to hard-core repulsion between tubes,
it is not relevant to DNA molecules undergoing long-range
electrostatic repulsion anyway). Nevertheless, the equilibrium
solutions found here are all such that R < π/4. This upper bound
has a mechanical origin and not a geometrical one: the
expressions for Fext in eq 10 and for Mext in eq 9 both diverge
at R ) π/4 and plectonemic solutions with a superhelical angle
larger than π/4 are unstable.

Application to Experiments. The model is used to extract
mechanical and geometrical parameters from experimental data.
To allow comparison with previous work, we use the same data
as in ref 20. These data are shown in Figure 2; they were
obtained on a 48 kbp lambda phage DNA molecule in a 10
mM phosphate buffer.

For each curve in Figure 2, corresponding to a given value
of the external force Fext, we extract the slope q by fitting the
linear region. The superhelical variables R and R are found by
solving eqs 10 and 14 and are plotted in Figure 3 as a function
of Fext. The reconstructed values of R are in the nanometric

range; they decrease with the pulling force, from approximately
6 to 2 times the DNA crystallographic radius in this particular
experiment. At large values of the force, R is close to (and
actually smaller than) the Debye length, 3.07 nm in 10 mM
salt, and the Manning condensation radius, 3.18 nm in 10 mM
salt.22 We note that the values of R found here in the presence
of a pulling force are smaller than (and in the same range as)
in ref 26 where no force is applied, which is consistent.

The reconstructed values of the twisting moment Mext and of
the contact pressure p are given in Figure 4, based on the same
experimental data. The values of Mext are determined both by
eq 9 using the previously computed values of R and R and by
the approximate formula 16 directly. A good agreement is
obtained, which validates the proposed approximation. The
values of Mext are also compared to those predicted by a
composite analytical model; see eq 17 in ref 17 (this model
uses effective parameters determined from Monte Carlo simula-
tions34).

4. Conclusion

We have shown that, under the approximation that thermal
fluctuations are neglected in the plectonemes, one can calculate
analytically the response of twisted DNA: supercoils are

Figure 2. Experimental hat curves showing the vertical extension of a
lambda phage DNA 48 kbp molecule as a function of the number of
turns imposed on the magnetic bead (salt concentration 10 mM,
temperature 298 K). Experimentally measured persistence length of
the molecule is A ) 51.35 nm. Each curve corresponds to a fixed pulling
force Fext: 0.25, 0.33, 0.44, 0.57, 0.74, 1.10, 1.31, 2.20, 2.95 pN.
Triangles represent the fit for the slope q of the linear region. Data
kindly provided by V. Croquette (CNRS, France).

Figure 3. Reconstructed values of the plectonemic radius R as a function
of the pulling force, from the data in Figure 2 by solving eqs 10 and
14. The angle R is shown in the inset.

Figure 4. Reconstructed values for the twisting moment in the molecule
based on the data shown in Figure 2, using the exact formula in eq 9
(solid squares), and the small angles approximation in eq 16 (open
circles). Comparison with the prediction of the composite model in ref
17 (curve). Contact pressure is shown in the inset.
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described by a mechanically exact and self-contained model.
Self-contact in the plectonemic region is treated with a hard-
core potential; an expression for the contact pressure between
the two dsDNA is derived. The hard-core radius is an effective
parameter determined, for a given value of the applied force,
from the slope of the linear region of the experimental curve.
A formula for the twisting moment is proposed, as a function
of the slope of the linear region of the experimental hat curve
only. We apply this analysis to experimental data from which
we extract the mechanical quantities: superhelical radius and
angle, contact pressure, and twisting moment. We compared
these values with predictions from previous analyses, when
available, and found that they are consistent. In future work,
we shall extend the present model to deal with long-range
interaction potentials, predict the superhelical radius, and utilize
magnetic tweezers experiments to probe DNA-DNA electro-
static interaction. The present paper is a first step toward a
mechanically accurate description of bare dsDNA subjected to
tensile and torsional loads, a problem relevant to the architecture
of DNA in the cell nucleus where proteins come into play.

Acknowledgment. We thank V. Croquette for providing us with
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